Great British Accent Challenge

Great British Accent Challenge is a project inspired by GeoGuessr. Users listen to a short audio clip of a speaker from Great Britain and attempt to guess where the speaker is from. After guessing, the results display how many users correctly select the speaker's location.

The site was created using Python and Django and the Google Maps API with JavaScript. There were around 100 audio clips stored using AWS S3. The site was deployed using AWS Elastic Beanstalk.

Lyric Guesser

Lyric Guesser is a simple game of guessing which word appears in more hit songs. Users can submit guesses for comparisons submitted by other users or create their own comparisons. After a user has voted, the site displays data about the pair of words as a venn diagram. Clicking on a section of the venn diagram displays a list of songs that contain the selected word. The database also tracks how other users guessed on the same comparison.

The site is a MERN stack application with the front-end created with React and the back-end with Express and MongoDB. The database contains the lyrics for songs from the Billboard Hot 100 top ten singles from 1958 to 2020 and the Billboard Year End Hot 100 from 1946 to 2020. The lyrics were sourced using Python and the Genius API.

Trump Content Warning- Chrome Extension

To help me avoid reading too much news focused on Donald Trump and to continue learning about making Chrome extensions, I decided to make an extension that previews links and displays a popup to warn you if Trump's name is mentioned. When the cursor hovers over a link a Ajax call to the page is made and the number of Trump mentions is displayed in the popup next to the link. The photos inside the popup correspond to the number of mentions.

Click on the title to download the Chrome extension. It can be added to Chrome by accessing your Chrome extensions, turning on developer mode and loading the download as an unpacked extension.

Audio Visualizer- Chrome Extension

My audio visualizer Chrome extension creates a 3D visualizer for the audio from a tab. When the chrome extension icon is clicked, the tab's audio stream is sent to the visualizer, using tab capture. I decided to use the visualizer part of the project to learn some Three.js. The audio stream is analyzed by the Web Audio API and the data is used to animate objects in Three.js.

NBA Predictor

NBA Predictor takes in a NBA player's name and an opponent team and makes a prediction for the player's points, assists, and rebounds. It also includes sliders to adjust the weight given to different variables used to make an estimate. Player and defense stats are collected using Ajax calls to ESPN and

Professional Athlete Mapping

I collected the birthplaces of professsionial athletes from the NFL, MLB, NBA, and NHL using ESPN's API and Wikipedia. Each birthplace was geocoded using GeoPy and then saved in csv files. With the ArcGIS API for JavaScript, I created a heat map of where professional athletes were born. When zoomed in close, the map changes to a simple point map so that points can be clicked to find out which athlete they represent.

Coding Game

The coding game is a simple puzzle game in which you solve a puzzle by scripting the movements of a robot. The script written to move the robot is similar to Python with some modifications.
The goal of the game is to move the robot to the finish square and after acquiring the correct sum. When the robot passes over a red square, the red square's value is added to the robot's value. There are three levels to solve in any order.

US Church Mapping

I used Python to gather addresses and denominations of churches in the United States and then geocoded them using GeoPy. This data was turned into csv files for each Christian denomination. With the ArcGIS API for JavaScript I turned this data into a heat map. Layers can be toggled on and off to view each denomination seperately.

US Cities Population Mapping

To continue using the ArcGIS API for JavaScript, I chose to map the most populous cities in the United States. I used data from the Census Bureau and then cleaned it up using Python.

The map displays each cities share of the total national population as well as its rank. I also added info popups that appear when the base of the graphic is clicked.

3D Ray Marching

I used ray marching and signed distance functions to draw a scene onto an HTML canvas using JavaScript. The scene is lit using diffuse lighting and includes shadows. I implemented signed distance functions for a sphere, a box, and a plane. The lightsource rotates slowly around the scene, but with three objects, the scene runs very slowly.

2D Ray Marching Visualization

Before rendering a full 3D scene using ray marching, I created a 2D visualization of sphere tracing. The canvas displays the circles that represent the ray marching steps leaving the "camera". The "camera" turns red when it detects a collision.

Left and right arrow keys rotate the "camera" and the up and down arrow keys move the "camera" forward and back. Clicking on the scene adds a random shape to the scene.

Crossword Maker

This project allows you to create a crossword grid and then attempts to fill it using words taken from and Wikipedia article titles. Custom words can be filled into the crossword before the rest of the crossword is filled. Unfortunately, pulling from such a large pool of possible words creates many crosswords with very obscure words and acronyms. Words were collected using Python and Selenium, and the crossword is created and filled using Java.

Mapping Google Trends

Google Trends limits the number of comparisons to 5 search terms. I wanted to make a visualization of sports teams based on Google search popularity, so I used Python and the Pytrends API to compare all teams in a league to each other. I used this project to create maps of NFL, NBA, NHL, MLB, and MLS teams in the United States.

Binary Tree Signatures

This project creates a visualization of binary trees. Every binary tree has a unique signature created by a pre-order traversal. Each node is represented by two decimals. The first digit represents a left child and the second represents the right child. for example, 01 represents a node with a right child, but no left child.

Trees can be constructed by clicking on the nodes or by entering a valid binary tree signature in either decimal or binary representation.

Harry Potter Sentiment Analysis

I used Python and VADER to analyze the sentiment of each of the Harry Potter books. I collected the average sentiment for each chapter and plotted the results using Matplotlib. I labeled the highest and lowest sentiment chapters of each book.

Subreddit Sentiments

I wanted to compare the sentiment of different subreddits and see what kind of comments attracted upvotes. I thought it would be interesting to compare subreddits focused on the same subject so I looked at r/Seattle and r/SeattleWA as well as r/Canada and r/OnGuardForThee. For more of a contrast, I also tried comparing r/Politics to r/Sports. I used the Reddit API to collect comments from top posts on a subreddit and used VADER to analyze the sentiment of each comment. Using Matplotlib, I made histograms for different subreddits based on the frequency of comments with similar sentiments and colored each segment based on the average number of upvotes for a comment within that segment. The dark green segments are the least upvoted, and the yellow segments are the most upvoted.

College Football GIS Mapping

I wanted to learn how to make maps using ArcGIS, so I decided to use the ArcGIS API for JavaScript to map the college football champions since 1869. I used the data from the College Football Data Warehouse's list of recognized winners.

Each school's bar grows based on its weight and its color fades to red based on the number of years since its last win. The green dot represents the weighted center for national champions. I assigned each year a weight of one and evenly divided it between the year's winners.

Solitaire AI

This project was created after seeing that a skilled solitaire player wins around 43% of games. I attempted to see what percentage of games of solitaire a simple AI could win. The AI I created is capable of winning games, but it is no where near a 43% win rate.

Twitch Clip Compiler

This project uses Python and Selenium to collect the top clips from the last week from a specified category on Twitch. It then downloads ten minutes worth of clips and edits them into one video along with titles. Finally, the edited video is uploaded to YouTube using the YouTube Data API. An edited video can also be created and uploaded from a list of handpicked links.

Instagram Bot

After seeing that the Instagram API would be deprecated in 2020, I decided to use Python and Selenium to create an Instagram bot that analyzes the likes on recent Instagram posts. It looks at the previous four posts and collects the lists of likes for each photo. It then looks at the most recent post and displays likes from people who did not like many of the previous posts, and people who liked many of the previous posts, but not the most recent one.

Topographic Map Experiments

In this project, I created a few experiments using screenshots of topographic maps. One of the more interesting looking experiments was looking at the relative heights of the terrain. The Java program converts the topographic map into a height map and then displays parts of the terrain that would appear higher or lower from the perspective of someone standing at the mouse cursors location.